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Synopsis 
The stresses and energy losses during simple extension cycles up to a maximum elonga- 

tion of 530% have been determined for an unfilled vulcanizate of natural rubber as a 
function of the temperature and extension rate. At sufficiently short elongation times 
and low temperatures, the rate and temperature dependence of the ascending stresses 
are connected by the Ferry transform, and the superposition principle can be applied to 
them. Outside this experimental range, the stresses are increased by crystallization. 
The validity of the Ferry transform for the energy losses and the energy loss ratio is more 
restricted than for the stresses, and the losses are always higher than can be expected 
from a purely viscoelastic mechanism. The additional losses are tentatively ascribed 
to incipient crystallization and stress-softening effect.s. At short elongation times and 
low temperatures, the losses approach the values predicted by viscoelasticity, and the 
loss ratio becomes independent of the maximum extension of the strain cycle. 

INTRODUCTION 

The literature dealing with the dynamic properties of rubber at  moderate 
and large strains, though sparse, has elicited the following experimental 
facts. The temperature and rate dependence of the stress at a given ex- 
tension are interrelated by means of the Ferry transform;’ the family of 
curves giving the stress at  various temperatures as a function of the loga- 
rithm of the rate are superimpossible by temperaturedependent horizontal 
shifts to produce a master curve at  the chosen reference temperature. The 
magnitude of the shifts is ruled by the same universal law which connects 
rate and temperature dependence of viscoelastic properties generally. 

This result has been established for polyisobutylene,2 styrene-butadiene 
rubber (SBR),3,4 and acrylonitrile-butadiene rubber (ABR).5 The excep- 
tion is natural rubber (NR) at higher strains in the range of rates and 
temperatures where crystallization is expected to interfere with the purely 
viscoelastic mechanisms.5 

All the previous studies have also indicated that the stress can be factor- 
ized as the product of two functions: one function depends only on the 
strain, and the other only on the time taken to reach this strain. This 
finding has led to a great simplification in the presentation of the results 
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because the strain and time functions can be interpreted in physically 
meaningful terms. 

At low temperatures arid for high rates of elongation the stress-strain 
curves develop a maximum at low strains, and simple factorization of the 
stress is no longer possible, but the sum of two products, each with differ- 
ent stress and time functions, gives a fair description of the data.6 

Previous work on NR at  moderate strains has now been expanded to 
large strains, with special reference to the energy losses incurred in a 
strain cycle. 

EXPERIMENTAL 

The tensometer used in the investigation has been described in an earlier 
publication,6 but the specimen holders were modified. The ring samples 
(1.8 cm. diameter), instead of being elongated between pins, were stretched 
between two couples of smail roller bearings, as employed by Grosch and 
Schallamach,G in order to ensure uniform extension. 

Temperature control above room temperature was achieved by immers- 
ing the samples in thermostatically controlled water and below room tem- 
perature, by immersion in alcohol circulated through a Minus Seventy 
thermostat. The rubber was an unfilled, conventional vulcanizate of 
NR.* The samples were cut out of sheets with a rotating two-bladed 
tool. 

PROCEDURE 

Application of a stress to a new rhbber sample reduces its initial stiffness. 
This effect, which occurs both in gum and filled rubbers, has been studied 
in detail by Mullins and Tobin’ and Harwood et al. ;8*g reproducible curves 
are obtained after several stretches. For this reason, the samples were 
subjected before the experiment to eight extension cycles with a maximum 
elongation of 600% at  room temperature. After resting for 5 min. the 
samples retained a small permanent set, and strains were referred to this 
“conditioned” length as calculated from their mean diameter and weight. 
The procedure was repeated when the sample had been resting for a pro- 
longed time. Each sample was uSed for several measurements and peri- 
odically checked at  a standard temperature and rate of elongation for signs 
of deterioration. After measurements below room temperature the 
samples were removed from the bath to expedite relaxation and allow 
crystallization effects to disapbear. 

Stress-strain cycles were i-ecorded for three different maximum strains 
a t  the temperatures and strain rates listed in Table I. 

* Composition of the samples (by weight): smoked sheet RSSl, 100 parts; zinc 
oxide, 5 phr; stearic acid, 3 phr; Dutrex R, 2 phr; Santocure, 0.7 phr; sulfur, 2.5 
phr; Nonox HFN, 1 phr. Cure: 40 min; at 140°C. 



DYNAMIC BEHAVIOR OF NATURAL RUBBER 1837 

TABLE I 

Maximum strain 
in cycle, yo Temperature, "C. Strain rate, %/set. 

0.07-700 in 4 steps 25; 0; -26; -45; -50 280 
440 25; 13; 0; -18; -26; 0.07-700 8 steps 

-35.5; -45 
530 25; 0; -26; -4G 0.07-700 in 4 steps 

RESULTS 

Exainples of the stress-strain loops are shown in Figure 1, the ordinate 
being the stress F on the unstressed cross-sectional area of the conditioned 
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Fig. 1. Examples of stress-strain cycles. 



1838 J. A. C. HARWOOD AND A. SCHALLAMACH 

Fig. 2. Eiiergy loss iu cycle vs. temperature and strain rab; two rnaxirnuin exteiisioiis, 
E = 2.8 and 5.3. 

specimen. One of the extension curves exhibits a pronounced maximuin 
of the type referred to in the Introduction, followed by a negative char- 
acteristic. Mathematical argument based on energy considerations has 
been invoked to show how this phenomenon can occur without necking 
or cold drawing taking place.6 For corroboratory evidence electronic flash 
photographs of a straight (as opposed to ring) sample of ABR were taken 
under conditions of rate and temperature under which a maximum in the 
extension curve of this material occurs, and again no necking could be 
observed. 

The work of extension and the energy lost during the cycle were deter- 
niined by graphical integration, and the ratio p of energy lost to work done 
was calculated. 

The effect of temperature and rate of elongation on the energy losses 
and the loss ratio p is illustrated by the three-dimensional plots in Figures 
2 and 3 for stress-strain cycles with two different maximum elongations. 

O L  
-50 

Fig. 3. Energy loss ratio vs. temperature and strain rate; two maximum extensions, B = 
2.8 and 5.3. 
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Fig. 4. Master curve of stress vs. strain rate for 300% strain. 

DISCUSSION 

Strain -Increasing Curves 

The construction of master curves for the stress at a given strain as a 
function of the rate of extension, by horizontal shifts of the curves obtained 
at different temperature, was only partially successful. This failure of 
the Ferry transform fully to describe the interrelation between temperature 
and rate dependence of the stresses was expected from the results obtained 
a t  moderate ~ t r a ins .~  In  order to demonstrate the deviations of the 
stresses from the values expected from a purely viscoelastic mechanism, a 
transform was carried out by using the Williams, Landel, and Ferrylo 
(WLF) equation for the temperature dependence of the shift factor aT: 

log aT = --S.SG(T - T,J/[lOl.G + (2' - T,)] (1) 

The standard reference temperature T, in eq. (1) was taken as -21"C., 
as determined by torsion pendulum measurements. The resulting plots 
for the stress as a function of the transformed strain rate aTR at strains 
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Fig. 5. Master curve of stress vs. strain rate for 400% strain. 

of 300 and 400% are shown in Figures 4 and 5 ;  the stresses have been 
multiplied by the ratio between the chosen reference temperature (293°K.) 
and the experimental temperature to allow for the temperature depen- 
dence of rubberlike elasticity as predicted by the kinetic theory.' 

The graphs show that the transform produces a reasonably well docu- 
mented master curve at a strain of 2800j0, but at 440% a set of separate 
curves is obtained. The stresses a t  first decrease with increasing rate of 
elongation, reach a minimum, and then follow the values given by an 
envelope common to all temperatures. There can be no doubt that this 
departure from the behavior encountered at lower strains is due to strain- 
induced crystallization which produces a stiffening of the rubber if the time 
of elongation is long enough for crystalline regions to form. Taking the 
actual rate of extension at which the stress curves in Figure 5 have a mini- 
mum as a criterion of the least time necessary for appreciable crystalliza- 
tion to occur, the values in Table I1 are obtained which indicate that 
crystallization is fastest a t  -2G"C., in agreement with other findings on 
the temperature dependence of the rate of crystallization in NR." The 
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TABLE I1 

Temperature "C. Time of crystallization, sec. 

- 13 14.2 
- 26 4 .2  
- 35 6 .8  
-45 14.9 

envelope in Figure 5 can therefore justifiably be considered as the master 
curve for the stress in the absence oi  crystallization. 

The contribution of crystallization stiffening to the stress at various 
strains can be assessed by constructing stress-strain curves from the values 
given by envelopes such as that in Figure 5 and comparing them with the 
experimental results. An example is shown in Figure 6 for a rate of ex- 
tension of 0.5%/sec. a t  -26°C. 

It is obvious from Figure 5 that the stresses cannot be factorized as the 
product of a strain and a time function over the whole range of experi- 
mental variables. Factorization of the stresses is, however, possible for 
strains below 300% elongation so that, in this range 

F = f(44t) (2) 
where e is the strain and t the time taken to reach this strain at a upiforni 
rate of extension. The experimental evidence will be adduced below 
in connection with Figure 8. As the function f(e) approaches c for small 
strains (Hooke's law), p(t) is seen to be identical with the dynamic Young's 
modulus. T-he stress-strain curve for a constant value of t is called 
isochronal. 

In  principle, both f(t) and q(t) can be derived from the experimental 
data, but the determination of ~ ( t ) ,  which governs the dynamic behavior 
of the rubber, is considerably facilitated if an analytical expression is awil- 
able for f(e). Smith4 and Landel and Stedry3 have found that the strain 
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Fig. 7. Isoehroiial stress-strain dala plotted after eq. (3). 

function of SBR can be represented by the enipirical equation proposed by 
Martin, Roth, and StiehleP for static stress-strain curves. This equa- 
tion (AIRS equation) is given by eq. (3) : 

F = E[(l/a) - (1/a2)1 exp { A [ a  - (l/a)l] (3) 

where a is the extension ratio and A is the slope of the straight line ob- 
tained when log [u2F/(a - l)] is plotted as function of [a - ( l / a ) ] .  It 
is easily seen that E is Young's modulus; its logarithm is equal to the 
intercept of the straight line on the abscissa. 

Equating now the factor of E in eq. (3) with f ( ~ ) ,  eq. (2) becomes, after 
taking logarithms 

log [Fa2/(a - l ) ]  = log ~(l) + 0.434A[a - (1/a)] (4) 

The validity of eq. (4) for dynamic stresses is tested by constructing 
isochronal stress-strain curves for various times t (  = e/R) from the experi- 
mental data and plotting, as in the static case, log [ a 2 F / ( a  - l)] versus 
[a - (l/a)]. The straight lines in Figure 7, which have been compiled for 
NR at -45"C., indicate that eq. (3) is for the present purposes a suffi- 
ciently good approxiination to the strain function j ( e ) .  As the lines are 
parallel within the liniits of experimental error, with a slope A = 0.56, 
the time function q(t) can be directly derived from the experimentally 
determined stresses by means of the MRS equation, eq. (3). 
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Strain-Decreasing Curves 

The importance of v(t) lies in the fact that predictions can be made from 
it as to the stresses during retraction, and hence to the losses. 

Equation (2) suggests the applicability of Boltzmann's superposition 
principle to stresses a t  large strains, as it has also been surmised by Ha1~in.I~ 
The superposition principle, as originally proposed, is defined only for a 
linear stress-strain relationship, but eq. (2)  can be linearized by writing 

S(4 = d . 1  (5) 

where g(e) is a new strain fuuctioii. 
becomes 

lteplaciiig the strain e by El, ey. ( 2 )  

Fly(€) = Rtq(t) = Z2+(t) (6) 

which defines a new time function #(t). With the help of eq. (6), the 
stresses during extension can immediately be used to calculate the stresses 
during retraction, Fa, by applying the superposition principle, without hav- 
ing recourse to a particular model imitating the viscoelastic behavior of the 
material. This has been shown by Chang,14 who derived eq. (7) for a linear 
system 

F d  = R+(t) - 2R+(t - t,) (7) 

where t is now the total time elapsed since the stress-strain cycle was 
started, and t, is the time at which the maximum strain was reached. 

Applying eq. (7) to the linearized stress F d / g ( e )  and taking account of the 
fact that the strain during retraction is equal to R(2t, - t ) ,  the generalized 
form of eq. (7) for the stress during retraction is 

F d  = f(e) [$'(t) - 2#(t - tm>l/(2tm - t )  (8)  

Before proceeding it should be pointed out that the stresses during re- 
traction at various temperatures and rates are not amenable to the Ferry 
transform because they depend both on t and t,. 

Values of +(t)  were calculated from stresses during extension to strains 
up to 300% elongation by using eqs. (5) and (6), with eq. (3) for f(e). 
The dependence of +(t) on t at -45°C. and +25"C. is shown in the double 
logarithmic plot in Figure 8. This graph confirms the validity of the 
factorization, eq. (2) ,  because +(t) derived from different stress-strain 
curves lie on a single curve. This graph contains data obtained with 
different samples, and small errors in the determination of their cross- 
sectional area may contribute to the scatter. The scatter is significant 
only at  short elongation times at -45°C.; that is to say, under conditions 
where sharp maxima occur in the stress-strain curves (Fig. 1) and slight 
errors in the strain lead to large differences in the value of +(t). 

The curves for -45°C. and +25"C. merge at  long elongation times, and 
the slope then approaches unity in the logarithmic plot. It is seen from 
eq. (8) that when #(t) is proportional to t, the strain-decreasing stress curve 
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coincides with the strain-increasing curve, and the energy losses vanish 
during slow extension cycles. 

Figure 9 shows four experimental stress-strain loops and the corre- 
sponding retraction curves calculated from eq. (8). The theoretical re- 
traction curve lies in each case above the experimental one; the difference 
is very pronounced at low rates of extension, both at  +25"C. and -45"C., 
but becomes progressively smaller with increasing rate of extension. The 
divergence of the experimental energy losses, i.e., the areas within the 
loops, from those which would be determined by means of the calculated 
retraction curves is serious, particularly for slow stress-strain cycles. 

The disagreement between theory and experiment cannot wholly be as- 
cribed to crystallization, because the evaluation of data for butadiene- 
acrylonitrile rubber, given in the earlier publication, produces similar 
differences between measured and calculated retraction curves. It is 
thought that the energy losses which thus cannot be accounted for by 
either viscoelasticity or crystallization are due to stress-softening effects 
mentioned above. The fact that reproducible stress-strain loops are 
obtained after several cycles proves only that a stationary state has been 
reached; reversible stress-softening during subsequent cycles is still 
feasible. 

Two mechanisms have been put forward for stress-softening in gum vul- 
canizate~.~ The main contribution is thought to originate from local non- 
afFine deformation due to crosslinks being displaced with respect to their 
surroundings during extension. This displacement is not easily recovered 
during retraction. A secondary source of stress-softening is the breakage 
of labile crosslinks during extension which occurs in vulcanizates of the 
type used in this work. Both processes are sources of energy loss. 

Energy Losses 
The rate and temperature dependence of the energy losses incurred 

during strain cycles with a given maximum elongation should be interre- 
lated by the Ferry transform if they are of viscoelastic origin hecause only 
one time factor is involved. An attempt to construct a master curve 
for the energy loss ratio at  a maximum elongation of 280% is shown in 
Figure 10. In contrast to the stresses attained at  this strain during ex- 
tension (Fig. 4), the energy loss ratio gives separate curves which merge 
into a common envelope only at  high rates of extension. The failure of 
the energy losses to obey the Ferry transform over the whole experimental 
range is to be expected from the difference between measured and calcu- 
lated retraction curves discussed in the last section because both findings 
demonstrate a departure from a purely viscoelastic loss mechanism. 
Figure 10 bears a strong resemblance to Figure 5, in which similar diver- 
gences of the stress at 440% strain were ascribed to crystallization. It 
cannot be decided on the present evidence whether the effects shown in 
Figure 10 are due to crystallization not discernible during extension. It 
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Fig. 10. Master curve of loss ratio f i  for 280% strain. 

must be borne in mind that the time available for crystallization to develop 
during the whole strain cycle is longer than during extension alone. Also, 
recent work by Harwood and Payne suggests crystallization during re- 
traction from strains of about 30070.15 

A survey of the dependence of the energy loss ratio on temperature and 
strain as function of the elongation time is given in Figure 11. At room 
temperature (+25"C.) the losses are practically independent of the rate 
and increase with the maximum strain; the results for -45°C. show one 
unifying feature in that the loss ratio at elongation times below, say, 4 
sec., becomes independent of the strain. As the elongation time increases, 
the curves have a shallow minimum which occurs the sooner the larger 
the strain, but it is surprising that the loss ratios a t  44D% and 530% are 
practically equal. 

This is also true at  -26°C.; at  this temperature, a t  which the rate of 
crystallization is fastest, the loss ratios at the two highest extensions in- 
creases slightly with the elongation time. Their approximate constancy 
is probably fortuitous viscoelastic losses decreasing and hysteresis due to 
crystallization increasing, with increasing time. At very short times, the 
curves for 120 and 2S0y0 strain merge again as viscoelastic losses pre- 
dominate. 

Description of the Strain-Increasing Curves 
Halpin13 has pointed out that if the factorization of the stress according 

to eq. (2) is possible, the strain function f(e) must be identical with any 
expression valid for conditions of thermodynamic equilibrium because the 
strain function must hold good for very long elongation times. HalpinI3 
showed that, stress-strain data obtained from various types of dynamic 
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Fig. 11. Energy loss ratio vs. time at different temperatures and strains. 

measurements could be fitted to the strain function derived by TreloaP 
from the kinetic theory of rubberlike elasticity. This equation, with a 
minor approximation introduced by Halpin, is 

3F/NkT = &C-'(a/&) - 3a-2 (9) 
where N is the number of chain segments between crosslinks and n the 
statistical number of links in each chain. c-' stands for the inverse 
Langevin function. In  the dynamic case, NkT in eq. (9) is replaced by 
(p(t)/3.  of the right- 
hand side of eq. (9); this is easily seen by working out eq. (9) for small 
strains at  which it must reduce to 

F = p(t) X e 

The only adjustable parameter in eq. (9) is n; for its determination, 
strain functions were calculated with different values of n, plotted loga- 
rithmically and superimposed on the experimental curves to pick out the 
best fit. The vertical displacement then yields the dynamic modulus 
cp(t). The four examples in Figure 12 show representative results, and 

The strain function f(e) is therefore equal to 
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Table I11 gives the values of q(t) and n used to obtain them; q(t) derived 
from the MRS equation is listed for comparison. 

TABLE I11 

4), kfdcm.2 Extension 
Temperature, "C. time, sec. n From eq. (9) Fpom eq. (3) 

+25 100 81 12.2 14.4 
- 35 10 49 12.6 16.9 
- 45 1 49 17.2 17.0 
- 50 10 49 36.8 33.0 

The values of q(t) determined by the two methods agree reasonably well. 
It is possibly significant that a larger n had to be used for slow extension at 
room temperature than for the other conditions. Freedom of rotation 
around bonds decreases with decreasing temperature and thus reduces 
the effective number of links in the chains. 

Although the theoretical curves in Figure 12 are a fair representation of 
the experimental results above about 100% strain, serious deviations occur 

Strain € 

Fig. 12. Isochronal stressstrain curves: (-) calculated from the Treloar-Halpin 
expression, eq. (9). 
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at  -45°C. and -50°C. at the lower strains. This is where a hump begins 
to appear in the stress-strain curves (Fig. 1) which is not predicted by 
the statistical theory. It must furtherinorc be stressed that both the equa- 
tion of Martin et al. and Treloar’s equation contain only one elastic con- 
stant, whereas it is known that the stress st moderate strains, both static 
and dynamic, is better described by the so-called Mooney-Rivlin equation 
which contains two constants? It is interesting to note that these de- 
partures from the simple statistical theory disappear a t  higher strains 
where it furnishes an adequate strain function and involves only one elastic 
constant. 

Conclusions 

The rate and temperature dependence of the stresses developed in natural 
rubber during extension to high strains conforms, like that of synthetic 
elastomers, to a viscoelastic pattern if the experimental conditions do not 
allow appreciable crystallization to occur. The stress can then be factor- 
ized as the product of the dynamic Young’s modulus and a strain function. 
This result appears to indicate the validity of the superposition principle, 
but retraction curves calculated on this basis yield higher stresses and 
therefore lower losses during a strain cycle than are found experimentally. 
The agreement between theory and experiment becomes acceptable only 
at low temperatures and high rates of elongation. 

Similarly, the Ferry transform when applied to the mechanical energy 
losses or to the energy loss ratio, breaks down at rates and temperatures a t  
which the stresses during extension still obey it. There are, thus, mecha- 
nisms of energy loss other than viscoelastic which cannot all be attributed 
to crystallization; stress-softening has been put forward as one possible 
explanation of this effect. 

One unifying feature, and probably the most relevant result obtained 
in this work, is that the energy loss ratio a t  short elongation times and low 
temperatures, where viscoelastic losses predominate, becomes independent 
of the strain in the experimental range from 120 to 530% elongation. 

Part of this work has been submitted by J. A. C. H. as an M.Sc. thesis to the University 
of Manchester; the work forms part of a research program undertaken by the Natural 
Rubber Producers’ Research Association. 
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R&UlUQ 

Les Btirements e t  les pertes d’6nergie au cours de cycles d’extension simples jusqu’h un 
maximum de 530% ont 6th determines pour un vulcanisaton charge de caoutchouc 
nature1 en fonction de la temperature et de la vitesse d’extension. A des temps d’blonga- 
tion suffisamment courts e t  des temphtures  basses, la dBpendance de la vitesse et de la 
temp6rature des extensions croissantes sont reliees par 1’6quation de Ferry et le principe 
de superposition peut leur &re applique. Outre ce d o m i n e  experimental, les 6tirements 
sont a c c m  par cristallisation. La validit6 de 1’6quation de Ferry pour les pertes d’6nergie 
er le rapport de perte d’hnergie est plus fortement limithe que pour les Btihments e t  les 
pertes sont toujours plus 61evBes que celles prevues au depart d’un mecanisme purement 
visco6lastique. Des pertes additionneles sont attribubes h titre d’essai 51 une cristallisa- 
tion debutante e t  51 des effets de ramollissement par Btirement. A des temps d’hlongation 
courts 51 basse temphrature, les pertes s’approchent des valeurs pdvues par la visco- 
Blasticite e t  le rapport de perte devient independant de l’extension maximum dii cycle de 
tension. 

Zusammenfassung 
Spannungen und Energieverluste wahrend einfacher Dehnungszyklen bis zu einer 

maximalen Elongation von 530% wurden an einem ungefullten Naturkautschukvul- 
kanisat als Funktion der Temperatur und Dehnungsgeschwindigkeit bestimmt. Bei 
geniigend kurzen Dehnungsdauern und niedrigen Temperaturen werden Geschwindig- 
keits- und Temperaturabhangigkeit der ansteigenden Spannungen durch die Ferry- 
Transformation verknupft und das Superpositionsprinzip kann darauf angewendet 
werden. Ausserhalb dieses experimentellen Bereiches werden die Spannungen durch 
Kristallisation vergrossert. Die Giiltigkeit der Ferry-Transformation fur die Energiever- 
luste und das Energieverlustverhaltnis ist starker eingeschrankt als fur die Spannungen 
und die Verluste sind immer hoher als fur einen rein viskoelastischen Mechanismus 
erwartet werden kann. Die zusatzlichen Verluste werden versuchsweise einer beginnen- 
den Kristallisation und Spannungserweichungsffekten zugeschrieben. Bei kurzen 
Dehnungsdauern und niedrigeren Temperaturen nahern sich die Verluste den durch die 
Viskoelsstizitat bedingten Werten und das Verlustverhaltnis w ird von der maximalen 
Dehnung wahrend des Verformungszyklus unabhangig. 
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